Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix?: an experimental study with bovine chondrocytes.
نویسندگان
چکیده
The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml). In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 +/- 0.8 microg/10(6) cells; mean +/-, SEM, but remained considerably lower than in monolayer cultures with/without Spongostan. Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation.
منابع مشابه
Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold
BACKGROUND Autologous chondrocyte transplantation is a promising technique for treatment of cartilage defects. Three dimensional chondrocyte cultures on a scaffold are widely used to retain the chondrogenic phenotype. Using a biodegradable gelatin scaffold is one option for the cell delivery system, but molecular and histological studies of the method have not yet been done. METHODS We evalua...
متن کاملPoly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis.
Three-dimensional poly(L-lactic acid) (PLLA) scaffolds with high porosity and an average pore size of 280-450 microm were fabricated using gelatin particles as porogen. The particles were bonded together by incubation in saturated water vapor at 70 degrees C for 3.5 h. After casting the PLLA/1,4-dioxane solution, freeze-drying and porogen leaching with 70 degrees C water, a porous scaffold with...
متن کاملBIOLOGICAL RESPONSE OF CHONDROCYTES CULTURED IN AN ELECTROSPUN THREE-DIMENSIONALPOLY(e-CAPROLACTONE) SCAFFOLD
Introduction Differentiated chondrocytes have been widely employed in studies of cartilage regeneration and tissue engineering. However, the low cell density of cartilage poses the problem of low cell yield following isolation for direct seeding onto scaffolds. To overcome this problem, chondrocytes are usually expanded in monolayer cell culture before seeding on any scaffold. This approach int...
متن کاملDevelopment of foreign body giant cells in response to implantation of Spongostan as a scaffold for cartilage tissue engineering.
Spongostan, a gelatinous haemostatic sponge, is used in surgery. Moreover, Spongostan may serve as a scaffold for proteins or cells implanted into defects. At the site of biomaterial implantation, foreign body giant cells (FBGCs) may develop which are responsible for Spongostan degradation. The purpose of the present study was to examine whether Spongostan may serve as a scaffold in allogenic g...
متن کاملساخت داربست نانوفیبر هیبریدی PCL/PLGA با قابلیت رهایش کنترلشده انسولین به منظور کاربرد آن در مهندسی بافت غضروف
Introduction: Poly lactic co- glycolic acid (PLGA) and poly caprolacton (PCL) are highly applicable polymers in the field of drug delivery and tissue engineering scaffolds. Therefore, this study aimed to design an insulin-loaded PCL/PLGA hybrid nanofiber scaffold in order to be applied in attachment and growth of chondrocytes. Moreover, it can provide a vehicle for the controlled release of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of bone and joint surgery. British volume
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2009